Part Number Hot Search : 
BE681T AM29LV64 23A003 5551P UZ140 5551P MAX16 TA8029
Product Description
Full Text Search
 

To Download IRLU2908 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.irf.com 1 irlr2908 IRLU2908 hexfet ? power mosfet description specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this hexfet power mosfet are a 175c junction operating temperature, low r jc, fast switching speed and improved repetitive avalanche rating. these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications.\ the d-pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. the straight lead version (irfu series) is for through-hole mounting applications. power dissipation levels up to 1.5 watts are possible in typical surface mount applications. s d g v dss = 80v r ds(on) = 28m ? i d = 30a d-pak irlr2908 automotive mosfet features l advanced process technology l ultra low on-resistance l dynamic dv/dt rating l 175c operating temperature l fast switching l repetitive avalanche allowed up to tjmax pd - 94501 i-pak IRLU2908 absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 100c continuous drain current, v gs @ 10v (see fig. 9) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj e as (tested) sin g le pulse avalanche ener gy tested value  i ar avalanche current  a e ar repetitive avalanche ener gy  mj dv/dt peak diode recovery dv/dt  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds thermal resistance parameter typ. max. units r jc junction-to-case ??? 1.3 c/w r ja junction-to-ambient (pcb mount)  ??? 40 r ja junction-to-ambient ??? 110 120 0.77 16 180 250 see fig.12a,12b,15,16 max. 39 28 150 30 300 (1.6mm from case ) -55 to + 175 2.3
  2 www.irf.com s d g s d g notes    through   are on page 11 hexfet ? is a registered trademark of international rectifier. static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 80 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 0.085 ??? v/c r ds(on) static drain-to-source on-resistance ??? 22.5 28 m ? ??? 25 30 v gs(th) gate threshold voltage 1.0 ??? 2.5 v gfs forward transconductance 35 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 22 33 nc q gs gate-to-source charge ??? 6.0 9.1 q gd gate-to-drain ("miller") charge ??? 11 17 t d(on) turn-on delay time ??? 12 ??? ns t r rise time ???95??? t d(off) turn-off delay time ??? 36 ??? t f fall time ???55??? l d internal drain inductance ??? 4.5 ??? nh between lead, 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 1890 ??? pf c oss output capacitance ??? 260 ??? c rss reverse transfer capacitance ??? 35 ??? c oss output capacitance ??? 1920 ??? c oss output capacitance ??? 170 ??? c oss eff. effective output capacitance ??? 310 ??? diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 39 (body diode) a i sm pulsed source current ??? ??? 150 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 75 110 ns q rr reverse recovery charge ??? 210 310 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v ds = 64v v gs = 4.5v ? = 1.0mhz, see fig. 5 v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 4.5v  mosfet symbol v gs = 0v v ds = 25v v gs = 0v, v ds = 64v, ? = 1.0mhz conditions v gs = 0v, v ds = 0v to 64v t j = 25c, i f = 23a, v dd = 25v di/dt = 100a/s  t j = 25c, i s = 23a, v gs = 0v  showing the integral reverse p-n junction diode. v ds = v gs , i d = 250a v ds = 80v, v gs = 0v v ds = 80v, v gs = 0v, t j = 125c r g = 8.3 ? i d = 23a v ds = 25v, i d = 23a v dd = 40v i d = 23a v gs = 16v v gs = -16v v gs = 4.5v, i d = 20a  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 23a 
  www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 25c vgs top 15v 10v 4.5v 4.0v 3.5v 3.0v 2.7v bottom 2.5v 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 175c vgs top 15v 10v 4.5v 4.0v 3.5v 3.0v 2.7v bottom 2.5v 0 10 20 30 40 50 60 i d , drain-to-source current (a) 0 10 20 30 40 50 60 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c vds = 10v 20s pulse width 2 3 4 5 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 20s pulse width
  4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 5 10 15 20 25 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 64v v ds = 40v v ds = 16v i d = 23a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse
  www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 5 10 15 20 25 30 35 40 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 38a v gs = 4.5v 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2
  6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 9.3a 16a bottom 23a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a
  www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 23a
  8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms
  www.irf.com 9  

  
   
   

    6.73 (.265) 6.35 (.250) - a - 4 1 2 3 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 4.57 (.180) 2.28 (.090) 2x 1.14 (.045) 0.76 (.030) 1.52 (.060) 1.15 (.045) 1.02 (.040) 1.64 (.025) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 6.45 (.245) 5.68 (.224) 0.51 (.020) min. 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain 10.42 (.410) 9.40 (.370) notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions shown are before solder dip, solder dip max. +0.16 (.006). example: lot code 9u1p this is an irfr120 with assembly we e k = 16 dat e code ye ar = 0 logo rectifier international as s e mb l y lot code 016 irfu120 9u 1p notes: t his part marking information applies to devices produced before 02/26/2001 international logo rectifier 34 12 irf u 120 916a lot code assembly example: with assembly this is an irfr120 year 9 = 1999 dat e code line a week 16 in the ass embly line "a" as s embled on ww 16, 1999 lot code 1234 part number notes : t his part marking information applies to devices produced after 02/26/2001
  10 www.irf.com i-pak (to-251aa) package outline 
   
  i-pak (to-251aa) part marking information 6.73 (.265) 6.35 (.250) - a - 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 2.28 (.090) 1.14 (.045) 0.76 (.030) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions show n are before solder dip, solder dip max. +0.16 (.006). 9.65 (.380) 8.89 (.350) 2x 3x 2.28 (.090) 1.91 (.075) 1.52 (.060) 1.15 (.045) 4 1 2 3 6.45 (.245) 5.68 (.224) 0.58 (.023) 0.46 (.018) week = 16 dat e code year = 0 notes : t his part marking information applies to devices produced before 02/26/2001 example: lot code 9u1p this is an irfr120 with assembly as s e mb l y international rectifier logo lot code irf u120 9u 1p 016 international logo rectifier lot code as s e mb l y example: wi t h as s e mb l y this is an irfr120 ye ar 9 = 1999 dat e code line a we e k 19 in the assembly line "a" as s embled on ww 19, 1999 lot code 5678 part number notes : t his part marking information applies to devices produced after 02/26/2001 56 irf u120 919a 78
  www.irf.com 11 data and specifications subject to change without notice. this product has been designed and qualified for the automotive [q101] market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 02/03 
 repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).  limited by t jmax , starting t j = 25c, l = 0.71mh, r g = 25 ? , i as = 23a, v gs =10v. part not recommended for use above this value.  i sd 23a, di/dt 400a/s, v dd v (br)dss , t j 175c.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994. d-pak (to-252aa) tape & reel information 
   
  tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRLU2908

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X